108-2 Machine Learning (機器學習) - GitHub
文章推薦指數: 80 %
李宏毅教授負責授課與作業規劃。
HW1 Linear Regression. 資料: 行政院環境環保署空氣品質監測網所下載的觀測資料目的: 本作業 ...
Skiptocontent
{{message}}
IPINGCHOU
/
NTU_MachineLearning
Public
Notifications
Fork
8
Star
22
108-2MachineLearning(機器學習)
22
stars
8
forks
Star
Notifications
Code
Issues
1
Pullrequests
0
Actions
Projects
0
Wiki
Security
Insights
More
Code
Issues
Pullrequests
Actions
Projects
Wiki
Security
Insights
IPINGCHOU/NTU_MachineLearning
Thiscommitdoesnotbelongtoanybranchonthisrepository,andmaybelongtoaforkoutsideoftherepository.
master
Branches
Tags
Couldnotloadbranches
Nothingtoshow
{{refName}}
default
Couldnotloadtags
Nothingtoshow
{{refName}}
default
1
branch
4
tags
Code
Latestcommit
Gitstats
107
commits
Files
Permalink
Failedtoloadlatestcommitinformation.
Type
Name
Latestcommitmessage
Committime
HW10_Anomaly_Dection
HW11_GAN
HW12_Transfer_Learning
HW15_Reinforcement_Learning
HW1_LinearRegression
HW2_Classification
HW3_CNN
HW4_RNN
HW5_ExplainableAI
HW6_Adversarial_attack
HW8_Seq2Seq
HW9_Unsupervised_Learning
README.md
Viewcode
NTU_MachineLearning
HW1LinearRegression
HW2BinaryClassification
HW3CNN-FoodClassification
HW4RecurrentNeuralNetworks-TextSentimentClassification
HW5ExplainableAI-onCNNmodel(HW3)
HW6Adversarialattack-onblackboxCNNmodel
HW7NetworkCompression
HW8Seq2seq-en2cn
HW9UnsupervisedLearning
HW10AnomalyDetection
HW11GAN
HW12TransferLearning
HW13MetaLearning
HW14Life-longLearning
HW15ReinforcementLearning
README.md
NTU_MachineLearning
108-2MachineLearning(機器學習)
由李宏毅教授、吳沛遠教授和林宗男教授共同合授。
李宏毅教授負責授課與作業規劃。
HW1LinearRegression
資料:行政院環境環保署空氣品質監測網所下載的觀測資料
目的:本作業實作LinearRegression預測出PM2.5的數值
實作LinearRegression並手刻Adagrad以及Adamoptimizer實現梯度下降。
Simplebaseline√(ByLinearRegression)
Strongbaseline√(ByLinearRegression)
HW2BinaryClassification
資料:Census-Income(KDD)Dataset
目的:whethertheincomeofanindividualexceeds$50000ornot?
實作LogisticRegression以及ProbabilisticGenerativemodel,其中LogisticRegression以Cross-Entropy作為lossfunction並實現梯度下降
Simplebaseline√(BothLogisticRegressionandProbabilisticGenerativemodel)
Strongbaseline√(ByasimpleNNmodel)
HW3CNN-FoodClassification
資料:此次資料集為網路上蒐集到的食物照片,共有11類
Bread,Dairyproduct,Dessert,Egg,Friedfood,Meat,Noodles/Pasta,Rice,Seafood,Soup,andVegetable/Fruit.
Trainingset:9866張
Validationset:3430張
Testingset:3347張
目的:食物分類
實作CNN模型
Simplebaseline√(ByasimpleCNNmodel)
Strongbaseline√(ByaclassicVGG-16model)
HW4RecurrentNeuralNetworks-TextSentimentClassification
資料:為Twitter上收集到的推文,每則推文都會被標注為正面或負面
除了labeleddata以外,還額外提供了120萬筆左右的unlabeleddata
labeledtrainingdata:20萬
unlabeledtrainingdata:120萬
testingdata:20萬(10萬public,10萬private)
目的:語句分類
實作RNN模型,使用LSTM
Simplebaseline√(ByasimpleLSTMmodel,withlabeledtrainingdata)
Strongbaseline√(ByabidirectionalLSTMdeepmodelwithmorefclayers,finetuned,withbothlabelandunlableddata,over90wsentences.)
HW5ExplainableAI-onCNNmodel(HW3)
資料:hw3CNNmodeloutput
目的:視覺化CNNmodeloutput
Task1-SailencyMap
Task2-FilterVisualization
Task3-Lime
Task4-Anyvisualization/explainingmethodyoulike-(SHAP)
HW6Adversarialattack-onblackboxCNNmodel
資料:food-11dataset
目的:attackblackboxmodelbyFGSM-attackoranyotherattackforbetterresult
Proxymodel:(pytorch-pretrained)
VGG-16
VGG-19
ResNet-50
ResNet-101
DenseNet-121
DenseNet-169
實作:以FGSM通過simplebaseline,並以任意方法通過strongbaseline
Simplebaseline√(ByFGSMattack,eps=0.3,acc=0.07,L-inf=16.7250)
Strongbaseline√(BybasiciterativemethodFGSM(I-FGSM),eps=0.03,alpha=0.005,acc=0,L-inf=8.4000)
AlsotriedOne-Pixel-Attack,butwithslowcomputationspeedandbadresult:(
HW7NetworkCompression
pass
HW8Seq2seq-en2cn
資料:manythings之cmn-eng
train:18000sents
valid:500sents
test:2636sents
目的:英翻中,每次輸入單一句子
實作:利用GRU建立Seq2Seq模型,分別實現以下task並比較。
TeacherForcing
AttentionMechanism
BeamSearch
ScheduleSampling
此次並無baseline,BeamSearch以heapq實現,Schedulesampling選擇使用Linear,Exponential,InverseSigmoid實現。
可參見:https://arxiv.org/abs/1506.03099
HW9UnsupervisedLearning
資料:?
train:8500pics,32323
valX:500pics,32323
valY:labels,500
目的:將照片分為風景與非風景照
實作:建立autoencoder,並對其降維後分群
Simplebaseline√(Bytutorial,simpleCNNlayers,acc=0.74918)
Strongbaseline√(BydeeperCNNmodleandbmforeachlayer,acc=0.78941)
U-Net,simpleU-Netwithbm,betterreconstructionbutloweracc:((acc=0.73789)
HW10AnomalyDetection
HW11GAN
資料:facesbyCrypko,https://crypko.ai/#/
train:10000pics,64643
目的:訓練出GAN
實作:DCGAN,WGAN
此次作業無Kaggle,實作DCGAN觀察modecollapse以及實作WGAN避免modecollapse。
詳細列於report.pdf之中
HW12TransferLearning
資料:?
train:5000pics,32323,10labels,realRGBimages
target:100,000pics,28281,nolabels,graffitiimages
目的:只訓練在trainlabel上,在不需要targetlabel的情況下提升targetlabel的預測準確度。
實作:DaNN,MSDA
Simplebaseline√(BytutorialDaNN,Source:Cannytransfer,acc=0.57270)
Strongbaseline√(ByMSDA,Source:Canny,Sobel,Laplacian,Graytransfer,acc=0.75790)
MSDAreference:https://github.com/VisionLearningGroup/VisionLearningGroup.github.io/tree/master/M3SDA/code_MSDA_digit
HW13MetaLearning
pass
HW14Life-longLearning
pass
HW15ReinforcementLearning
資料:gym-LunarLander
目的:以PGbasedalgorithm讓登陸艇成功登陸月球~
實作:
PG
discountrewardwithPG
A2C
discountrewardwithnstepinfoA2C
About
108-2MachineLearning(機器學習)
Resources
Readme
Stars
22
stars
Watchers
3
watching
Forks
8
forks
Releases
4
hw9models
Latest
May14,2020
+3releases
Packages0
Nopackagespublished
Languages
Python
99.7%
Shell
0.3%
Youcan’tperformthatactionatthistime.
Yousignedinwithanothertaborwindow.Reloadtorefreshyoursession.
Yousignedoutinanothertaborwindow.Reloadtorefreshyoursession.
延伸文章資訊
- 1Official** 李宏毅(Hung-yi Lee) 機器學習Machine ... - GitHub
Official** 李宏毅(Hung-yi Lee) 機器學習Machine Learning 2021 Spring - GitHub - ga642381/ML2021-Spring: *...
- 2李宏毅教授2021年機器學習作業與筆記匯總 - GitHub
李宏毅教授2021年機器學習作業與筆記匯總. Contribute to 1am9trash/Hung_Yi_Lee_ML_2021 development by creating an acc...
- 3Official** 李宏毅(Hung-yi Lee) 機器學習Machine ... - GitHub
Official** 李宏毅(Hung-yi Lee) 機器學習Machine Learning 2022 Spring - GitHub - virginiakm1988/ML2022-Spr...
- 4李宏毅2021/2022春季机器学习课程课件及作业 - GitHub
李宏毅2021春季机器学习课程课件及作业. Contribute to Fafa-DL/Lhy_Machine_Learning development by creating an accou...
- 5李宏毅机器学习笔记(LeeML-Notes) - GitHub
李宏毅《机器学习》笔记,在线阅读地址:https://datawhalechina.github.io/leeml-notes - GitHub - datawhalechina/leeml-n...